Evaluation of recombinant human transferrin (DeltaFerrin(TM)) as an iron chelator in serum-free media for mammalian cell culture.
نویسندگان
چکیده
DeltaFerrin(TM), a yeast-derived recombinant human transferrin produced by Delta Biotechnology Ltd. (Nottingham UK), was found to be a suitable replacement for holo human transferrin in serum-free culture media of the MDCK cell line (chosen because of its transferrin dependence) in short-term screening assays. Long-term subculture was achieved with DeltaFerrin(TM) supporting growth equivalent to that of holo human transferrin. DeltaFerrin(TM) and a selection of chemical iron chelators were found in short-term assays to be equivalent to holo human transferrin in supporting growth of MDCK, BHK-21-PPI-C16 and Vero-PPI. In long-term subcultures, however, only DeltaFerrin(TM) was found to support cell growth in a manner essentially equivalent to holo human transferrin in all three cell lines. For both BHK and Vero variants tested, recombinant preproinsulin production was unaltered by replacing holo human transferrin with DeltaFerrin(TM). As such, this is the first report of a recombinant human transferrin produced under animal-free conditions that can act as a universal iron chelator for cells grown in serum-free media (SFM).
منابع مشابه
Optimization of Key Factors in Serum Free Medium for Production of Human Recombinant GM-CSF Using Response Surface Methodology
Researchers add serum to a classical medium at concentrations of 5 to 10% (v/v) to grow cellsin-vitro culture media. Unfortunately, serum is a poorly defined culture medium componentas its composition can vary considerably while serum-free cell culture media are an excellentalternative to standard serum-containing media and offer several major advantages. Advantagesof us...
متن کاملOptimization of Key Factors in Serum Free Medium for Production of Human Recombinant GM-CSF Using Response Surface Methodology
Researchers add serum to a classical medium at concentrations of 5 to 10% (v/v) to grow cellsin-vitro culture media. Unfortunately, serum is a poorly defined culture medium componentas its composition can vary considerably while serum-free cell culture media are an excellentalternative to standard serum-containing media and offer several major advantages. Advantagesof us...
متن کاملP-66: Optimization of Human Luteinizing Hormone Expression in CHO Cells Culture by Stepwise Reduction in Serum Concentration
Background: Mammalian Cell lines are the main expression system for the production of recombinant therapeutic proteins. Optimization of cell culture condition is performed via alteration in different parameter. Cell culture media plays an important role in cell cycle because of compounds such as amino acids, vitamins, inorganic salts, glucose, and serum as a source of growth factors, trace elem...
متن کاملP-76: Stepwise Reduction of Fetal Bovine Serum Levels in Chinese Hamster OvaryCells -Expressing Human Chorionic Gonadotrophin- Culture
Background: The demand for producing recombinant therapeutic proteins by mammalian cell lines, such as Chinese hamster ovary (CHO) cells, continues to grow. Significant achievements in process optimization including development of cell culture strategies for largescale and cost-effective production have been made. Fetal bovine serum (FBS) is an often essential growth supplement and yet most cos...
متن کاملIron-induced L1210 cell growth: evidence of a transferrin-independent iron transport.
L1210 leukemic cells can be cultured continuously in serum-free medium supplemented merely with either transferrin or iron salts. No transferrin or transferrin-like molecules were detected in the conditioned medium from cells established in serum-free medium plus iron. In these cells, iron uptake was found to occur through a saturable transport system exhibiting the properties of an allosteric ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cytotechnology
دوره 51 1 شماره
صفحات -
تاریخ انتشار 2006